Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.205
Filtrar
1.
Sci Rep ; 14(1): 9413, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658584

RESUMO

Previous studies investigating the relationship between systemic lupus erythematosus (SLE) and primary ovarian failure (POF) generated conflicting results. To data, no mendelian randomization study has been applied to examine this association. In this study, genetic instruments for exposure (SLE) were selected from a GWAS study with 5201 cases and 9066 noncases. Outcome data for POF and three reproductive traits (age at menarche, age at menopause, and age at first live birth) were obtained from other eligible GWASs. To estimate causal association, the inverse-variance weighted (IVW) method (the main analyse), MR Egger test, weighted median, simple mode, and weighted mode were applied. Moreover, sensitivity analyses were conducted to ensure the robustness of the results. Estimated by the IVW method, SLE was suggested to be causally related to the risk of POF (OR = 1.166, 95% CI 1.055-1.289, P = 0.003) and delayed age at first live birth (OR = 1.006, 95% CI 1.002-1.010, P = 0.007), with no evidence of a causal association between SLE and age at menopause or menarche. The estimates were robust according to sensitivity analysis. In conclusion, the two-sample MR study supported a causal association between SLE and POF from a genetic aspect.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Insuficiência Ovariana Primária , Humanos , Lúpus Eritematoso Sistêmico/genética , Insuficiência Ovariana Primária/genética , Feminino , Menarca/genética , Fatores de Risco , Menopausa/genética , Adulto
2.
PeerJ ; 12: e17251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646488

RESUMO

The occupational chemical 4-Vinylcyclohexene diepoxide (VCD) is a reproductively toxic environmental pollutant that causes follicular failure, leading to premature ovarian insufficiency (POI), which significantly impacts a woman's physical health and fertility. Investigating VCD's pathogenic mechanisms can offer insights for the prevention of ovarian impairment and the treatment of POI. This study established a mouse model of POI through intraperitoneal injection of VCD into female C57BL/6 mice for 15 days. The results were then compared with those of the control group, including a comparison of phenotypic characteristics and transcriptome differences, at two time points: day 15 and day 30. Through a comprehensive analysis of differentially expressed genes (DEGs), key genes were identified and validated some using RT-PCR. The results revealed significant impacts on sex hormone levels, follicle number, and the estrous cycle in VCD-induced POI mice on both day 15 and day 30. The DEGs and enrichment results obtained on day 15 were not as significant as those obtained on day 30. The results of this study provide a preliminary indication that steroid hormone synthesis, DNA damage repair, and impaired oocyte mitosis are pivotal in VCD-mediated ovarian dysfunction. This dysfunction may have been caused by VCD damage to the primordial follicular pool, impairing follicular development and aggravating ovarian damage over time, making it gradually difficult for the ovaries to perform their normal functions.


Assuntos
Cicloexenos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária , Compostos de Vinila , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Feminino , Compostos de Vinila/toxicidade , Camundongos , Transcriptoma/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo
3.
J Ovarian Res ; 17(1): 75, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575997

RESUMO

Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.


Assuntos
Menopausa Precoce , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Animais , Feminino , Camundongos , Antígenos CD28 , Interleucina-10/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt
4.
J Ovarian Res ; 17(1): 67, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528613

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a severe disorder leading to female infertility. Genetic mutations are important factors causing POI. TP63-truncating mutation has been reported to cause POI by increasing germ cell apoptosis, however what factors mediate this apoptosis remains unclear. METHODS: Ninety-three patients with POI were recruited from Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Whole-exome sequencing (WES) was performed for each patient. Sanger sequencing was used to confirm potential causative genetic variants. A minigene assay was performed to determine splicing effects of TP63 variants. A TP63-truncating plasmid was constructed. Real-time quantitative PCR, western blot analyses, dual luciferase reporter assays, immunofluorescence staining, and cell apoptosis assays were used to study the underlying mechanism of a TP63-truncating mutation causing POI. RESULTS: By WES of 93 sporadic patients with POI, we found a 14-bp deletion covering the splice site in the TP63 gene. A minigene assay demonstrated that the 14-bp deletion variant led to exon 13 skipping during TP63 mRNA splicing, resulting in the generation of a truncated TP63 protein (TP63-mut). Overexpression of TP63-mut accelerated cell apoptosis. Mechanistically, the TP63-mut protein could bind to the promoter region of CLCA2 and activate the transcription of CLCA2 several times compared to that of the TP63 wild-type protein. Silencing CLCA2 using a specific small interfering RNA (siRNA) or inhibiting the Ataxia Telangiectasia Mutated (ATM) pathway using the KU55933 inhibitor attenuated cell apoptosis caused by TP63-mut protein expression. CONCLUSION: Our findings revealed a crucial role for CLCA2 in mediating apoptosis in POI pathogenesis, and suggested that CLCA2 is a potential therapeutic target for POI.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Fatores de Transcrição , Proteínas Supressoras de Tumor , Feminino , Humanos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Éxons , Menopausa Precoce/genética , Mutação , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas Supressoras de Tumor/genética
5.
Aging (Albany NY) ; 16(5): 4541-4562, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428403

RESUMO

Ningxin-Tongyu-Zishen formula (NTZF) is a clinical experience formula for the treatment of premature ovarian insufficiency (POI) in traditional Chinese medicine (TCM), and the potential mechanism is unknown. For in vivo experiments, POI mouse models (C57BL/6 mice), were constructed by subcutaneous injection of D-galactose (D-gal, 200 mg/kg). After treatment of NTZF (10.14, 20.27, 40.54 g/kg;) or estradiol valerate (0.15 mg/kg), ovarian function, oxidative stress (OS) and protein expression of Sirt1/p53 were evaluated. For in vitro experiments, H2O2 (200 µM) was used to treat KGN to construct ovarian granulosa cells (OGCs) cell senescence model. Pretreatment with NTZF (1.06 mg/mL) or p53 inhibitor (Pifithrin-α, 1 µM) was performed before induction of senescence, and further evaluated the cell senescence, OS, mRNA and protein expression of Sirt1/p53. In vivo, NTZF improved ovarian function, alleviated OS and Sirt1/p53 signaling abnormalities in POI mice. In vitro experiments showed that NTZF reduced the level of OS and alleviated the senescence of H2O2-induced KGN. In addition, NTZF activated the protein expression of Sirt1, inhibited the mRNA transcription and protein expression of p53 and p21. Alleviating OGCs senescence and protecting ovarian function through Sirt1/p53 is one of the potential mechanisms of NTZF in the treatment of POI.


Assuntos
Galactose , Insuficiência Ovariana Primária , Humanos , Feminino , Camundongos , Animais , Galactose/toxicidade , Sirtuína 1/genética , Sirtuína 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Células da Granulosa/metabolismo , Senescência Celular , RNA Mensageiro/metabolismo
6.
Genes (Basel) ; 15(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540391

RESUMO

Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.


Assuntos
Infertilidade Feminina , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , DNA Helicases/genética , Homozigoto , Infertilidade Feminina/genética , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética
7.
Women Health ; 64(4): 308-316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468162

RESUMO

Around 70 percent of cases of Primary Ovarian Insufficiency (POI) etiology remain unexplained. The aim of our study is to contribute to the etiology and genetic background of POI. A total of 37 POI patients and 30 women in the reproductive period were included in this prospective, case-control study between August 2020 and December 2021. The women were examined for 36 genes with next-generation sequencing (NGS) panel. Gene variations were detected in 59.5 percent of the patients in the case group. FSHR p.S680N (rs6166, c.2039 G>A) and FSHR p.A307T (rs6165, c.919 G>A) gene variants, which are most frequently located in exon 10 of the FSHR gene, were detected in both groups. Although it was not found that these gene variants were significantly different between the groups, it was also found that they were significantly different in POI patients under 30 years of age and in those with a family history of POI. Variations were detected in 12 genes in POI patients. Two gene variants (FGFR1 [c.386A>C, rs765615419] and KISS1 [c.58 G>A, rs12998]) were detected in both groups, and the remaining gene variants were detected only in POI patients. No differences were detected between the groups in terms of gene variations. However, the gene variations detected only in POI patients may play a role in the etiology of POI.


Assuntos
Variação Genética , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/genética , Estudos de Casos e Controles , Estudos Prospectivos , Adulto , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Receptores do FSH/genética
8.
Hum Genet ; 143(3): 357-369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483614

RESUMO

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi , Heterozigoto , Insuficiência Ovariana Primária , Humanos , Insuficiência Ovariana Primária/genética , Feminino , Adulto , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Sequenciamento do Exoma , Dano ao DNA , Anemia de Fanconi/genética , Mutação de Sentido Incorreto
9.
Mol Cell Endocrinol ; 587: 112212, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521400

RESUMO

RESEARCH QUESTION: Premature ovarian insufficiency (POI) is characterised by amenorrhea associated with elevated follicle stimulating hormone (FSH) under the age of 40 years and affects 1-3.7% women. Genetic factors explain 20-30% of POI cases, but most causes remain unknown despite genomic advancements. DESIGN: We used whole exome sequencing (WES) in four Iranian families, validated variants via Sanger sequencing, and conducted the Acyl-cLIP assay to measure HHAT enzyme activity. RESULTS: Despite ethnic homogeneity, WES revealed diverse genetic causes, including a novel homozygous nonsense variant in SYCP2L, impacting synaptonemal complex (SC) assembly, in the first family. Interestingly, the second family had two independent causes for amenorrhea - the mother had POI due to a novel homozygous loss-of-function variant in FANCM (required for chromosomal stability) and her daughter had primary amenorrhea due to a novel homozygous GNRHR (required for gonadotropic signalling) frameshift variant. WES analysis also provided cytogenetic insights. WES revealed one individual was in fact 46, XY and had a novel homozygous missense variant of uncertain significance in HHAT, potentially responsible for complete sex reversal although functional assays did not support impaired HHAT activity. In the remaining individual, WES indicated likely mosaic Turners with the majority of X chromosome variants having an allelic balance of ∼85% or ∼15%. Microarray validated the individual had 90% 45,XO. CONCLUSIONS: This study demonstrates the diverse causes of amenorrhea in a small, isolated ethnic cohort highlighting how a genetic cause in one individual may not clarify familial cases. We propose that, in time, genomic sequencing may become a single universal test required for the diagnosis of infertility conditions such as POI.


Assuntos
Amenorreia , Insuficiência Ovariana Primária , Humanos , Feminino , Adulto , Masculino , Amenorreia/diagnóstico , Amenorreia/genética , Irã (Geográfico) , Insuficiência Ovariana Primária/genética , Mutação de Sentido Incorreto , Genômica , DNA Helicases/genética
10.
Theranostics ; 14(4): 1371-1389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389850

RESUMO

Rationale: Premature ovarian insufficiency (POI) is an accelerated reduction in ovarian function inducing infertility. Folliculogenesis defects have been reported to trigger POI as a consequence of ovulation failure. However, the underlying mechanisms remain unclear due to the genetic complexity and heterogeneity of POI. Methods: We used whole genome sequencing (WGS), conditional knockout mouse models combined with laser capture microdissection (LCM), and RNA/ChIP sequencing to analyze the crucial roles of polycomb repressive complex 1 (PRC1) in clinical POI and mammalian folliculogenesis. Results: A deletion mutation of MEL18, the key component of PRC1, was identified in a 17-year-old patient. However, deleting Mel18 in granulosa cells (GCs) did not induce infertility until its homolog, Bmi1, was deleted simultaneously. Double deficiency of BMI1/MEL18 eliminated PRC1 catalytic activity, upregulating cyclin-dependent kinase inhibitors (CDKIs) and thus blocking GC proliferation during primary-to-secondary follicle transition. This defect led to damaged intercellular crosstalk, eventually resulting in gonadotropin response failure and infertility. Conclusions: Our findings highlighted the pivotal role of PRC1 as an epigenetic regulator of gene transcription networks in GC proliferation during early folliculogenesis. In the future, a better understanding of molecular details of PRC1 structural and functional abnormalities may contribute to POI diagnosis and therapeutic options.


Assuntos
Infertilidade , Insuficiência Ovariana Primária , Adolescente , Animais , Feminino , Humanos , Camundongos , Núcleo Celular , Proliferação de Células/genética , Mamíferos , Complexo Repressor Polycomb 1/genética , Insuficiência Ovariana Primária/genética , Reprodução , Modelos Animais de Doenças , Camundongos Knockout
11.
Reprod Biomed Online ; 48(4): 103685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324980

RESUMO

RESEARCH QUESTION: What role does programmed cell death 4 (PDCD4) play in premature ovarian insufficiency (POI)? DESIGN: A PDCD4 gene knockout (PDCD4-/-) mouse model was constructed, a POI mouse model was established similar to human POI with 4-vinylcyclohexene dioxide (VCD), a PDCD4-overexpressed adenovirus was designed and the regulatory role in POI in vitro and in vivo was investigated. RESULTS: PDCD4 expression was significantly increased in the ovarian granulosa cells of patients with POI (P ≤ 0.002 protein and mRNA) and mice with VCD-induced POI (P < 0.001 protein expression in both mouse ovaries and granulosa cells). In POI-induced mice model, PDCD4 knockouts significantly increased anti-Müllerian hormone, oestrodiol and numbers of developing follicles, and the PI3K-AKT-Bcl2/Bax signalling pathway is involved in it. CONCLUSION: The expression and regulation of PDCD4 significantly affects the POI pathology in a mouse model. This effect is closely related to the regulation of Bcl2/Bax and the activation of the PI3K-AKT signalling pathway.


Assuntos
Cicloexenos , Menopausa Precoce , Insuficiência Ovariana Primária , Feminino , Camundongos , Humanos , Animais , Proteína X Associada a bcl-2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo
12.
J Ovarian Res ; 17(1): 32, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310280

RESUMO

BACKGROUND: The etiology of premature ovarian insufficiency, that is, the loss of ovarian activity before 40 years of age, is complex. Studies suggest that genetic factors are involved in 20-25% of cases. The aim of this study was to explore the oligogenic basis of premature ovarian insufficiency. RESULTS: Whole-exome sequencing of 93 patients with POI and whole-genome sequencing of 465 controls were performed. In the gene-burden analysis, multiple genetic variants, including those associated with DNA damage repair and meiosis, were more common in participants with premature ovarian insufficiency than in controls. The ORVAL-platform analysis confirmed the pathogenicity of the RAD52 and MSH6 combination. CONCLUSIONS: The results of this study indicate that oligogenic inheritance is an important cause of premature ovarian insufficiency and provide insights into the biological mechanisms underlying premature ovarian insufficiency.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Feminino , Humanos , Insuficiência Ovariana Primária/genética , Menopausa Precoce/genética
13.
Probl Endokrinol (Mosk) ; 69(6): 113-120, 2024 Jan 24.
Artigo em Russo | MEDLINE | ID: mdl-38312001

RESUMO

BACKGROUND: 2025 is going to be the 100th anniversary of the first historical description of Turner syndrome - complex of  genomic abnormalities, congenital gonadal disruption and hypergonadotropic hypogonadism. Total estrogenic deficiency triggers development of age-related comorbidities. There is no doubt that personalized search for replicative markers of cellular aging among females with Turner syndrome is needed. AIM: To evaluate features of replicative (telomere length) and biochemical (lipid profile, calcium-phosphate album, thyroid hormones, markers cytolysis and cholestasis, carbohydrate metabolism, nitrogenic metabolism, electrolytes, FSH) markers among females with Turner syndrome. MATERIALS AND METHODS: Research has been provided in collaboration between Endocrinology Research Centre of the Russian Ministry of Health and Lomonosov Moscow State University Medical Research and Educational Centre in the period since 10.01.2021 until 01.08.2022. Females with non-iatrogenic hypergonadotropic hypogonadism caused by Turner syndrome (45,X0; 45,X/46,XX; 45,X/46,X,r(X); 13-40 y.o.; n=26) and primary ovarian insufficiency (18-39 нyears=26); healthy females of reproductive age (15-49 y.o.; n=24). Patients have undergone laboratory genetic (leucocyte telomere length), biochemical (fasting glycaemia, urea, creatinine, common/conjugated bilirubin, ALT, AST, gamma-glutamyl transferase, triglycerides, HDL-P, LDL-P, common cholesterol, common/ionized calcium, phosphate, vitamin D, sodium/potassium/chlorides, FSH, HbA1c) analyses. Body measurements - body mass, body height. DNA extraction - provided with Qiagen DNA blood mini kit (Germany). Leukocyte telomere length - with real-time polymerase chain reaction PCR (Flow-fish). Soft program IBM SPSS Statistics (version 26,0 for Windows). RESULTS: 1. Females with Turner syndrome have significantly lower mean telomere length (8,22 kB [6,63-9,30]) than with primary ovarian insufficiency (10, 34 кБ [8,41-13,08], p<0,001) and healthy reproductive age females (10,77 kB [9,95-13,16], р>0,05).2. Telomere length correlates directly and significantly with longevity of menopausal hormonal therapy among females with primary ovarian insufficiency (ρ = 505; p<0,001).3. Patients with Turner syndrome are inclined to vitamin D deficiency (р<0,001), dyslipidemia (р=0,01); increase of levels of aminotransferases, cholestasis markers, phosphate and FSH (р<0,001). CONCLUSION: Turner syndrome is serious genetic disease that leads not only to infertility but to significant decrease of quality/life longevity out of "healthy aging" conception.


Assuntos
Colestase , Hipogonadismo , Insuficiência Ovariana Primária , Síndrome de Turner , Animais , Humanos , Feminino , Síndrome de Turner/complicações , Síndrome de Turner/genética , Insuficiência Ovariana Primária/genética , Cálcio , DNA , Fosfatos , Hormônio Foliculoestimulante
14.
J Ovarian Res ; 17(1): 37, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336796

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a condition defined as women developing menopause before 40 years old. These patients display low ovarian reserve at young age and difficulties to conceive even with assisted reproductive technology. The pathogenesis of ovarian insufficiency is not fully understood. Genetic factors may underlie most of the cases. Actin cytoskeleton plays a pivotal role in ovarian folliculogenesis. Calponin 2 encoded by the Cnn2 gene is an actin associated protein that regulates motility and mechanical signaling related cellular functions. RESULTS: The present study compared breeding of age-matched calponin 2 knockout (Cnn2-KO) and wild type (WT) mice and found that Cnn2-KO mothers had significantly smaller litter sizes. Ovaries from 4 weeks old Cnn2-KO mice showed significantly lower numbers of total ovarian follicles than WT control with the presence of multi-oocyte follicles. Cnn2-KO mice also showed age-progressive earlier depletion of ovarian follicles. Cnn2 expression is detected in the cumulus cells of the ovarian follicles of WT mice and colocalizes with actin stress fiber, tropomyosin and myosin II in primary cultures of cumulus cells. CONCLUSIONS: The findings demonstrate that the loss of calponin 2 impairs ovarian folliculogenesis with premature depletion of ovarian follicles. The role of calponin 2 in ovarian granulosa cells suggests a molecular target for further investigations on the pathogenesis of POI and for therapeutic development.


Assuntos
60542 , Insuficiência Ovariana Primária , Adulto , Animais , Feminino , Humanos , Camundongos , Actinas/genética , Actinas/metabolismo , 60542/genética , 60542/metabolismo , Menopausa Precoce , Camundongos Knockout , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo
15.
J Pediatr Endocrinol Metab ; 37(4): 371-374, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38345890

RESUMO

OBJECTIVES: To report an unusual case of MCT8 deficiency (Allan-Herndon-Dudley syndrome), an X-linked condition caused by pathogenic variants in the SLC16A2 gene. Defective transport of thyroid hormones (THs) in this condition leads to severe neurodevelopmental impairment in males, while heterozygous females are usually asymptomatic or have mild TH abnormalities. CASE PRESENTATION: A girl with profound developmental delay, epilepsy, primary amenorrhea, elevated T3, low T4 and free T4 levels was diagnosed with MCT8-deficiency at age 17 years, during evaluation for primary ovarian insufficiency (POI). Cytogenetic analysis demonstrated balanced t(X;16)(q13.2;q12.1) translocation with a breakpoint disrupting SLC16A2. X-chromosome inactivation studies revealed a skewed inactivation of the normal X chromosome. CONCLUSIONS: MCT8-deficiency can manifest clinically and phenotypically in women with SLC16A2 aberrations when nonrandom X inactivation occurs, while lack of X chromosome integrity due to translocation can cause POI.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Insuficiência Ovariana Primária , Simportadores , Masculino , Adolescente , Humanos , Feminino , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Diagnóstico Tardio , Insuficiência Ovariana Primária/genética , Transportadores de Ácidos Monocarboxílicos/genética , Translocação Genética , Simportadores/genética
16.
BMC Womens Health ; 24(1): 91, 2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311764

RESUMO

BACKGROUND AND AIM: premature ovarian insufficiency (POI) is defined as the menopause before 40 years of age, and its prevalence is reported to be two-fold higher in Iranian women than the average for woman globally. POI is associated with several cardio/cerebrovascular complications as well as an increased overall mortality. Genetic factors, and serum levels of minerals and vitamin D, have been reported to be related to the prevalence of POI. We have investigated the association between some POI -related genotypes with the serum levels of some important micronutrients. METHODS: One hundred and seventeen women with POI and 183 controls without any renal, hepatic, and thyroid abnormalities were recruited as part of the MASHAD study. Demographic and anthropometric features were recorded and blood samples were collected and processed. DNA was extracted from the buffy coat of blood samples from all participants and 8 POI-related single nucleotide polymorphisms (SNPs) were determined using ASO-PCR or Tetra ARMS-PCR. Serum minerals and vitamin D concentrations were measured using routine methods. RESULTS: In women with POI, serum copper, phosphate, and calcium were significantly different for those with rs244715, rs16991615, and rs4806660 genotypes, respectively. In our control population, significant differences were also found in serum copper concentrations between different genotypes of rs4806660, rs7246479, rs1046089, and rs2303369. After adjusting for all confounding factors, the women with POI carrying TC genotype (rs4806660) had a lower risk to have serum copper levels < 80 (µg/dL) than those carrying a TT genotype. Furthermore, women with POI carrying GG genotype (rs244715) had a 6-fold higher risk to have serum copper levels > 155 than those carrying AA genotype. CONCLUSION: The C and G alleles of the rs4806660 and rs244715 polymorphisms respectively are independently associated with serum copper in women with POI. Further studies are necessary to investigate the association of serum copper and other micronutrients in women and other POI -related polymorphisms.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Feminino , Humanos , Estudos de Coortes , Cobre , Irã (Geográfico) , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/epidemiologia , Polimorfismo de Nucleotídeo Único , Vitamina D , Minerais
17.
Gene ; 901: 148128, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181927

RESUMO

Cyclophosphamide (CP), as an anti-cancer drug, is frequently used to treat various types of cancer. A decreased number of ovarian follicles impaired normal ovarian function, and subsequent premature ovarian failure (POF) presented as a side effect of cyclophosphamide usage. These events may eventually affect the fertility rate of individuals. The present study showed the effect of cyclophosphamide on ovarian reserves and the protective effect of L-carnitine (LC) as an antioxidant to prevent POF. To design the study, six to eight-week-old NMRI female mice were divided into three groups: control, cyclophosphamide (CP), and cyclophosphamide + L-carnitine (CP + LC). Mice received drugs intraperitoneally (IP) for 21 days. In the following 24 h after the last injection, both ovaries were used to evaluate the expression of Sohlh1 and Lhx8 genes by Real-time PCR. Furthermore, the alteration of Lhx8 promoter methylation was examined by Methylation-sensitive high-resolution melting analysis (MS-HRM). The present data showed the negative effect of CP on regulator genes of oogenesis including Sohlh1 and Lhx8. In addition, an examination of the epigenetic status of the Lhx8 gene showed a change in promoter methylation of this gene following cyclophosphamide injection. Although, L-carnitine is an effective antioxidant in relieving oxidative stress caused by cyclophosphamide and its damage, in the present study, however, the use of L-carnitine failed to protect the ovaries from changes caused by CP injection. So, using cyclophosphamide can alter the expression of folliculogenesis genes through its effects on epigenetic changes and may cause POF. The results of the present study showed that L-carnitine consumption can't protect the ovaries against the adverse effects of CP.


Assuntos
Antioxidantes , Insuficiência Ovariana Primária , Humanos , Camundongos , Feminino , Animais , Antioxidantes/farmacologia , Fatores de Transcrição , Carnitina/farmacologia , Carnitina/uso terapêutico , Ciclofosfamida/efeitos adversos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Epigênese Genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Aging (Albany NY) ; 16(1): 844-856, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38206302

RESUMO

Premature ovarian insufficiency (POI) is a diverse form of female infertility characterized by a decline in ovarian function before the age of 40. Melatonin (MT) is a potential clinical treatment for restoring or safeguarding ovarian function in POI. However, the specific therapeutic mechanism underlying this effect remains unclear. To address this, we conducted experiments using human granulosa cells (GCs) from both POI and normal patients. We examined the expression levels of autophagy-related genes and proteins in GCs through qRT-PCR and western blot analysis. Autophagy flux was monitored in GCs infected with GFP-LC3-adenovirus, and the regulatory function of MT in autophagy was investigated. Additionally, we employed pharmacological intervention of autophagy using 3-Methyladenine (3-MA) and RNA interference of Forkhead box O-3A (FOXO3A) to elucidate the mechanism of MT in the autophagy process. Compared to GCs from normal patients, GCs from POI patients exhibited irregular morphology, decreased proliferation, increased apoptosis, and elevated ROS levels. The expression of autophagy-related genes was downregulated in POI GCs, resulting in reduced autophagic activity. Furthermore, MT levels were decreased in POI GCs, but exogenous MT effectively activated autophagy. Mechanistically, melatonin treatment downregulated FOXO3A expression and induced phosphorylation in POI GCs. Importantly, silencing FOXO3A abolished the protective effect of melatonin on GCs. These findings indicate that autophagy is downregulated in POI GCs, accompanied by a deficiency in MT. Moreover, we demonstrated that supplementing MT can rescue autophagy levels and enhance GC viability through the activation of FOXO3A signaling. Thus, MT-FOXO3A may serve as a potential therapeutic target for POI treatment.


Assuntos
Melatonina , Insuficiência Ovariana Primária , Feminino , Humanos , Autofagia , Células da Granulosa/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Insuficiência Ovariana Primária/tratamento farmacológico , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Transdução de Sinais
19.
Mol Biol Rep ; 51(1): 68, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175272

RESUMO

BACKGROUND: Both non-obstructive azoospermia (NOA) and primary ovarian insufficiency (POI) are pathological conditions characterized by premature and frequently complete gametogenesis failure. Considering that the conserved meiosis I steps are the same between oogenesis and spermatogenesis, inherited defects in meiosis I may result in common causes for both POI and NOA. The present research is a retrospective investigation on an Iranian family with four siblings of both genders who were affected by primary gonadal failure. METHODS: Proband, an individual with NOA, was subjected to clinical examination, hormonal assessment, and genetic consultation. After reviewing the medical history of other infertile members of the family, patients with NOA went through genetic investigations including karyotyping and assessment of Y chromosome microdeletions, followed by Whole exome sequencing (WES) on the proband. After analyzing WES data, the candidate variant was validated using Sanger sequencing and traced in the family. RESULTS: WES analysis of the proband uncovered a novel homozygote nonsense variant, namely c.118C>T in MSH4. This variant resulted in the occurrence of a premature stop codon in residue 40 of MSH4. Notably, the variant was absent in all public exome databases and in the exome data of 400 fertile Iranian individuals. Additionally, the variant was found to co-segregate with infertility in the family. It was also observed that all affected members had homozygous mutations, while their parents were heterozygous and the fertile sister had no mutant allele, corresponding to autosomal recessive inheritance. In addition, we conducted a review of variants reported so far in MSH4, as well as available clinical features related to these variants. The results show that the testicular sperm retrieval and ovarian stimulation cycles have not been successful yet. CONCLUSION: Overall, the results of this study indicate that the identification of pathogenic variants in this gene will be beneficial in selecting proper therapeutic strategies. Also, the findings of this study demonstrate that clinicians should obtain the history of other family members of the opposite sex when diagnosing for POI and/or NOA.


Assuntos
Azoospermia , Insuficiência Ovariana Primária , Masculino , Humanos , Feminino , Azoospermia/genética , Homozigoto , Irã (Geográfico) , Insuficiência Ovariana Primária/genética , Estudos Retrospectivos , Sêmen , Proteínas de Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...